×
Hier anmelden um sich kostenlos auf Stellen zu bewerben oder Stellenanzeigen aufzugeben. X

Doctoral Research Associate; Wissenschaftliche*r Mitarbeiter*in, level E TV-L

in 48079, Münster, Nordrhein-Westfalen, Deutschland
Unternehmen: Universität Münster
Vollzeit position
Verfasst am 2026-01-19
Berufliche Spezialisierung:
  • Forschung/Entwicklung
    Forschungswissenschaftler, Biomedizinische Wissenschaft, Wirkstoffentdeckung, Pharmazeutische Wissenschaften
  • Wissenschaft
    Forschungswissenschaftler, Biomedizinische Wissenschaft, Wirkstoffentdeckung, Pharmazeutische Wissenschaften
Gehalts-/Lohnspanne oder Branchenbenchmark: 40000 - 60000 EUR pro Jahr EUR 40000.00 60000.00 YEAR
Stellenbeschreibung
Stellenbezeichnung: Doctoral Research Associate (Wissenschaftliche*r Mitarbeiter*in, salary level E 13 TV-L)

42,500 students and 7,750 employees in teaching, research and administration, all working together to shape perspectives for the future – that is the University of Münster. Embedded in the vibrant atmosphere of Münster with its high standard of living, the University’s diverse research profile and attractive study programmes draw students and researchers throughout Germany and from around the world.

The Institute of Organic Chemistry in the Faculty of Chemistry and Pharmacy at the University of Münster is seeking to fill the position of a PhD student in the Faculty of Chemistry. The position is available from the earliest possible date, preferably by 1st April 2026, as a full (100 %) position limited to 3 years. This PhD position is part of the EU‑funded Marie Skłodowska‑Curie Doctoral Network on Low Data Machine Learning for Sustainable Chemical Sciences under Grant Agreement No. .

As part of the Glorius Group at the University of Münster, we are a team of passionate researchers committed to shaping the future of molecular science. Our research bridges catalysis, functional molecule design, molecular machine learning and data‑driven discovery to address pressing scientific challenges. We are pioneers in the application of data science to challenges in (organic) chemistry, with over 15 years of interdisciplinary research.

Our data science team develops smart screening strategies and machine learning tools to accelerate reaction discovery & analysis, thereby improving chemical understanding. With a strong publication record and a collaborative spirit, we offer an inspiring environment for PhD candidates aiming to grow scientifically. We love science, innovation, and shaping the future of digital chemistry – together with you.

Project Overview

This project is a collaboration between 13 academic and industrial organisations with 14 PhD students in total. The aim of LowDataML is to train a new generation of scientists at the interface of machine learning, chemistry and other fields. We propose a data‑science guided and ML‑driven screening and optimisation workflow to improve the generality of modern synthetic methods.

Our first objective is to identify structural patterns and scaffolds that are accessible by modern synthetic methods but are at the same time underrepresented in databases of bioactive molecules such as ChEMBL. To achieve this, we will perform direct substructure matching and 3D similarity searches to determine key reactions based on product motifs. Generality of a methodology is critical to allow the incorporation of a variety of substrates and functional groups.

We will use an additive‑based screening approach to rapidly evaluate the generality of key reactions, followed by reoptimisation of promising reactions using a Bayesian optimisation algorithm. Batch selection strategies will allow parallel experimentation in 96‑well plates, with analysis by liquid and gas chromatography combined with UV, mass and flame ionisation detection. Optimised reactions will be applied in multi‑step diversity‑oriented synthesis of drug‑like compounds.

Expected

Results
  • Identification of underrepresented structural motifs accessible by modern synthetic methodologies.
  • Assessment of the robustness of key reactions using an additive‑based screening approach.
  • Development of a multi‑objective Bayesian optimisation algorithm for the reoptimisation of reactions.
  • Application of the reoptimised key reaction in the synthesis of drug‑like compounds.

As a PhD student in this Doctoral network you will use machine learning (ML) for the optimisation of the generality of synthetic methods. You will start with the search for structural patterns and scaffolds that are accessible by modern synthetic methods but are at the same time underrepresented in databases of bioactive molecules. You will apply an additive‑based screening approach to identify key reactions which can be investigated further.

The applications of ML as a tool for the optimisation of reaction yields will be developed and implemented. Optimised reactions will be run in parallel using a liquid handler to set and work up experiments in 96‑well plates. Analysis…

Stellen-Anforderungen
10+ Jahre Berufserfahrung
Bitte beachten Sie, dass derzeit keine Bewerbungen aus Ihrem Zuständigkeitsbereich für diese Stelle über diese Jobseite akzeptiert werden. Die Präferenzen der Kandidaten liegen im Ermessen des Arbeitgebers oder des Personalvermittlers und werden ausschließlich von diesen bestimmt.
Um nach Stellen zu suchen, sie anzusehen und sich zu bewerben, die Bewerbungen aus Ihrem Standort oder Land akzeptieren, klicken Sie hier, um eine Suche zu starten:
 
 
 
Suchen Sie hier nach weiteren Stellen:
(nach Beruf, Fähigkeit)
Standort
Increase search radius (miles)

Sprache der Stellenausschreibung
Lebenslauf-Kategorie
Bildungsgrad
Filter
Mindest-Bildungsgrad für die Stelle
Mindest-Berufserfahrung für die Stelle
Veröffentlicht in den letzten:
Gehalt